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THE PHOTON GAS FORMULATION OF THERMAL RADIATION 

By Robert C . Ried, Jr. 
Lyndon B. Johnson Space Center 

SUMMARY 

Thermal radiation transport is formulated on the basis of a photon gas and 
also, independently, on the basis of the corresponding transverse electromagnetic 
wave formulation. Nonequilibrium statistical thermodynamics is employed in the 
form of a postulated entropy extremum principle to truncate the photon gas moment 
equations by way of the most probable distribution function subject to appropriate 
physical constraints. This approach is applied to an equilibrium statistical thermo- 
statics derivation of the energy, linear momentum, and intrinsic angular momentum 
equations for an isotropic photon gas. Conservation equations are obtained in 
terms of a temperature, an energy average velocity, and an intrinsic angular mo- 
mentum diffusion velocity. Interactions between the radiation and physicai media 
are considered only in a general manner. The relativistic variation of a photon 
gas temperature is obtained, and the entropy is established as a true scalar. 

Major appendixes are included: (1) to illustrate the general form of photon- 
media interactions, (2) to provide an independent transverse electromagnetic wave 
formulation of radiation, (3) to establish the photon gas phase space representation 
by direct quantization of the electromagnetic variables, (4) to summarize integrals 
required in the statistical formulation, (5) to provide the correspondence between 
the thermodynamic constraint of momentum and a special relativistic Lorentz trans- 
formation, and (6) to illustrate the application of nonequilibrium statistidal thermo- 
dynamics by the treatment of a nonisotropic photon gas with the subsequent devel- 
opment of a corresponding second-order tensor temperature. 

INTRODUCTION 

The quantitative description of thermal radiation transport is generally 
a complex problem inherently involving both the microscopic and macroscopic 
characteristics of a physical medium. At the microscopic level, classical descrip- 
tions of the physical medium and of the electromagnetic field generally are not 
adequate for the description of mutual interactions . . A quantum mechanical treat- 
ment of the particles forming the physical medium and a quantum electrodynamic 
treatment of the transverse electromagnetic waves are required to describe the mu- 
tual interaction. These treatments culminate in transition probabilities for emission 
or absorption by the physical particles of electromagnetic angular momentum 
quanta having discrete energy and linear momentum, commonly called photons. 
At the macroscopic level, the radiation emission and absorption characteristics 



of the medium involve a statistical consideration of the energy, the linear momentum, 
and the angular momentum of the physical particles forming the medium. The 
objective of this report is to provide a comparable statistical consideration of 
the energy, the linear momentum, and,the angular momentum of the photons 
that make up the thermal radiation field and thereby to provide a more comprehen- 
sive basis for the treatment of macroscopic radiation transport. 

Thermal radiation transport in astrophysics, physics, and engineering 
problems has generally been treated by a semimicroscopic approach through 
the direct application of a radiation transfer equation (refs . 1 and 2) . This 
approach amounts to photon counting without statistical consideration of the photons 
themselves. The radiation transfer equation can be solved, in general, along 
any particular direction in space. However, the coupling of these solutions 
for the infinite number of directions at every point in space is limited to special 
cases. In an optically thin medium, the coupling of radiation in different directions. 
is relatively weak, and the direct application of the radiation transfer equation 
provides a reasonable approximation. In one-dimensional radiation transport 
problems, symmetry implicitly provides a statistical consideration of photon 
behavior, and the direct application of the radiation transfer equation is possible. 
In optically thick media, a diffusion approximation (refs. 3 and 4) to the radiation 
transfer provides a realistic approach to radiation transport within the media; 
however, this approximation generally breaks down at physical boundaries. 

An alternate approach toward obtaining a description of thermal radiation 
transport is through a moment method in which the Boltzmann equation for photons 
is expanded in a series of moments of the photon distribution function. Use of 
this method produces an infinite set of equations in physical space and time that 
must be truncated for practical application. In practice, these moment equations 
are normally truncated somewhat arbitrarily for mathematical convenience. 
This report includes a moment expansion obtained by analogy with molecular 
gas dynamics (refs. 5 to 13); hence, the photon gas designation. The moment 
equations are truncated physically by assuming that the general thermodynamic 
entropy will be a maximum subject to the constraints on the system, an assumption 
that, in principle, can be applied at any moment level. 

In generaI, this is a nonequilibrium statistical thermodynamics approach 
toward a macroscopic description of thermal radiation transport. The approach 
is developed generally and then applied to the restricted equilibrium statistical 
thermostatics derivation of the energy, linear momentum, and intrinsic angular 
momentum equations for an isotropic’ photon gas. Interactions between the photon 
gas and a medium will be considered only in a general manner. The equations 
obtained from the photon gas formulation are shown to correspond to an electro- 
magnetic formulation of transverse waves. In turn, the direct quantization of 
the electromagnetic variables describing transverse waves are related to the 
phase space representation of the photon gas. The isotropic photon gas relations 
are shown to be consistent with a relativistic Lorentz transformation of the four- 
stress tensor; thus, the relativistic nature of the photon gas temperature, by 
which the photon gas entropy is established as a relativistic invariant, is provided. 

A brief treatment of a nonisotropic photon gas is given as an example of 
the results produced by this nonequilibrium statistical thermodynamics approach. 
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Studies of radiation have contributed substantially to the development of basic 
physics in electromagnetics , thermostatics , statistical mechanics, quantum mechan- 
its , and relativity. It now appears that the study of radiation also may aid in the 
development of nonequilibrium thermodynamics. 

The generous assistance by and gracious support of the National Aerospace 
Laboratory of Tokyo, Japan, during a significant portion of work on the report 
while the author was in Tokyo is hereby acknowledged. In particular, the author 
would like to thank A. Tate of the National Aerospace Laboratory for his numerical 
computation of the ellipsoidal integrals. 
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SYMBOLS 

electromagnetic vector potential (eq . (C 1)) 

emission, absorption cross section for species n, between energy 
states i and j 

arbitrary four-dimensional vectors (appendix G) 

arbitrary constant (appendix F) 

simple Lorentz transformation matrices (eqs. (G7) and (G8)) 

scattering cross section for species n 

magnetic induction vector (eq. (B2)) 

arbitrary four-dimensional tensors (appendix G) 

speed of light 

frequency 

photon velocity vector 

electric displacement vector (eq . (Bl)) 

interaction operator (eq . (4) ) 

electric field 

electric field vector 
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AA 
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energy density (table I), exponential constant (eq. (30)) 

unit vector in polarization direction (eq . (C2)) 

defined mathematical function (eq . (E 11) ) 

photon distribution function in phase space (eq. (2)) 

Planck photon distribution function 

degeneracy of ith energy level of species n 

photon gas momentum (table I) , electromagnetic momentum (eq . (B14)) 

magnetic field 

magnetic field vector 

Planck constant, A z h/2n 

energy 

momentum 

specific intensity (eq. (8)) 

Boltzmann constant (eq. (25))) gray gas absorption coefficient 
(eq . (A151 > 

relative, absolute absorption coefficients 

number of dependent variables 

intrinsic angular momentum density (table I) 

magnetization vector (eq. (B2)) 

intrinsic angular momentum density flux (table I) 

intrinsic angular momentum number density (eq . (14)) 

molecular particle number density for species n 

photon number density (table I), dummy numeral (appendix F) 

total-pressure tensor (table I) 

polarization vector (eq . (B 1) ) 
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X 

X,Y ,z 
A 
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Ah 
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static pressure (eq. (44)) 

static-pressure tensor (eq. (H32)) 

energy density flux vector (table I) 

coefficient of infinite series (eq . (Cl) ) 

position vector in physical space (x ,y , z) 

Poynting vector (table II) 

total entropy (eq . (47)) 

entropy density, length in four space 

Maxwell stress tensor (table II), tensor temperature (eq. (HlO)) 

temperature 

time 

diffusion velocity (eq . (17) > 

dummy variable (appendix F) 

average velocity (table I, eq. (H29)) 

four-space velocity (eq. (G3)) 

volume 

charged-particle average velocity (eq . (B6)) 

stress flux triad (eq. (H24)) 

four-space position vector (eq. (Gl)) 

dummy variable (appendix F) 

physical space Cartesian coordinates 

acceleration vector (eq . (6) > 

defined quantity (eq. (H6)) 

Lagrangian multiplier tensor (eq . (H4)) 

relativistic contraction factor (appendix E) 
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unit tensor 

relative relativistic contraction factor (eq. (55))) charge density 
(eq . (B3)) , variational operator (eq . (28)) 

Dirac delta function 

wave-number vector, magnitude 

polar-angle coordinate (eq. (H8)) 

wave-number vector, magnitude (eq. (C2)) 

wavelength 

Lagrangian multiplier (eq. (28)) 

distance along intensity direction (eq . (9)) 

Stefan-Boltzmann constant (eq. (41)) 

entropy density flux (table I) 

stress-energy density four tensor (eq. (KlO) ) 

elliptic double integral function (eq. (H16), table H-I) 

arbitrary function (eqs . (11) and (12)) table I) 

spherical-angle coordinate (eq . (H8)) , dummy variable (appendix F) 

unit direction vector 

Superscripts: 

0 rest condition 

+,- positive, negative angular momentum 

I alternate, moving system 

* complex conjugate 



Subscripts: 

i,j ,k dummy indices, energy state i ,j ,k 

m medium 

n species n 

T total, rest 

x,y,z Cartesian components of vector 

n wave-number space variable or operator 

x per wavelength 

?J ,v,$,X dummy indices for four-dimensional tensors (appendix G) 

0 rest condition, transverse electromagnetic wave 

+,- positive, negative angular momentum 

Mathematical notations: 

d3r physical space volume element 

d3n 
,. 

wave-number space volume element 

vector, first-order tensor 

“tensor, ” second-order tensor 

triad, third-order tensor 

< > wave-number space average (eq. (11)) , macroscopic value of 
electromagnetic variable 

GENERAL FORMULATION 

In this section, the Boltzmann equation for photons, the radiation transfer 
equation, and the equations of change are presented. 

Boltzmann Equation fdr Photons 

T’he quantization of a transverse electromagnetic field is obtained by 
direct analogy with the quantum mechanics of particle motion (refs. 14 to 16). 
Maxwell’s equations for transverse waves are written in Hamiltonian form with 
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generalized momenta and coordinates. From this form, the analogy with particle 
motion leads to a corresponding SchrGdinger equation for the transverse field. 
The solutions of this equation can be put in the form of characteristic energy or 
momentum functions with photons as a physical interpretation. 

To begin a photon gas formulation, it is sufficient to accept the validity of 
Planck’s hypothesis that the momentum of a photon may be considered to be propor- 
tional to a vector wave number :. The vector velocity of a photon &j/n, where 
c is the speed of light and T-I is the vector magnitude, leads to the relativistic 
relation momentum times velocity equals energy. 

;I- h&c; - hen 

where h is the Planck constant. The statement that a photon has a physical posi- 
tion denoted by ? and a wave number denoted by ;I will not, by definition, imply 
a specification that is greater than that allowed by Heisenberg’s uncertainty princi- 
ple . Similarly, the statement that a photon has a frequency cq at a time t will 
imply a specification that.is less than the maximum allowed by the uncertainty prin- 
ciple . With these implications, the translational state of a photon at a time t is 
represented by a wave number ;1 at the position 1. A specification of the spin 
orientation is also necessary since one of two independent spin states exists for 
each photon. Because the spin results in a photon having an angular momentum h 
(ref. 14) of G-I:, the spin state is denoted by + or -, respectively. 

For convenience, the translational state of a photon is represented at a time 
t as a location in a six-dimensional phase space, or 1-1 -space, having three physi - 
cal coordinates and three wave-number coordinates. For simplicity, orthogonal 
Cartesian coordinates ? = (x , y , z) are used for physical space, and a locally par- 
allel wave-number space 6 = (nx, n , n 

Y z 
> is defined. The motion of a photon in 

time is represented by a path or trajectory in this l.~ -space; and, at a given time, 
each photon in the radiation field is represented by a point in this 1-1 -space. Be- 
cause photons are indistinguishable, this designation does not represent a unique 
specification of the radiation field; any number of photon locations can be inter- 
changed without a change in the lo -space representation of the photon gas. 

The distribution of the photons in the defined 1-1 -space is represented by 

densities or distribution functions f’(r) ;I ,t> and f‘- (1, fi ,t> . These distribution 
functions integrated over 1-1 -space give the total number of photons that make up 
the radiation field. More explicitly, the number of photons in the p -space volume 

element d3n d3r about the point (I!, ;I> at time t is the following. 

[f’(G,i,t) + f-(G,fi,t)] d3n d3r (2) 



The total number of photons in the gas at this time is given by 

s d3n J 
:-space S-space 

d3r[f+(f.,fi,t) + f-($,fi,t)] (3) 

The Boltzmann equation in phase space is analogous to a continuity equation 
in physical space. The rates of change of the photon distribution functions are 
considered for a differential element in u -space and in time. However, the 
resulting analysis is valid only when the changes are considered for a finite volume 
in p -space and for a finite time increment. 

The distribution functions are explicit functions of position, wave number, 
and time. In general, the behavior of a photon gas will also implicitly depend on 
parameters that describe the interactions of photons with material particles. It 
is assumed that changes in the distribution function arising from the statistical 
effects of interactions are equal to those arising from explicit changes in position, 
wave number, and time. Because the Boltzmann equation is written as a rate of 
change with time, this assumption neglects the interaction time with respect to 
the time between collisions (ref. 17). 

The Boltzmann equations for the rate of change of the photon distribution 
functions are given by 

f*(;,{,t) = D*f’(%t) (4) 

where D is the interaction operator. The two equations (positive and negative 
polarization) in equation (4) are written for a fixed volume element in 1~- -space 
during the time dt . The first term on the left side is an explicit rate of change, 
whereas the second and third terms are the changes because of a changing flux 
in configuration space and wave-number space, respectively. The right side of 
equation (4) is an operator representation of the rate of change (due to interactions, 
i.e., absorption, emission, and scattering) of the distribution function at r^, 
6, and t. More detailed consideration of this interaction term is provided by St. 
Pierre (ref. 18) and by others (refs. 14 to 16, 19, and 20). An illustration of 
the interaction operation between a photon gas and a physical gas is given in ap- 
pendix A. If the two Boltzmann equations contained in equation (4) are added, 

a single Boltzmann equation operating on f’(r) ;1 ,t) + f- (r , ;I, t) is obtained. 

The velocity of a photon in configuration space c;i/n is equal to the rate 
of change of photon position with time. That is, 

d$- fi 
af q (7 

(5) 
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The velocity of a photon in wave-number space is proportional to the photon accel- 
eration in configuration space and is defined as 

(6) 

This definition is consistent with relativistic requirements (refs. 21 and 22) and 
A 

retains acceleration vector k’(r ,t> with the dimensions of an acceleration or force 

per unit mass. This definition of i’ is meant merely to be representative and 
not inclusive of the types of external forces that might be included in the specifica- 
tion of photon behavior. In the absence of an external force or its equivalent, 
A+ 
a and &- are set equal to zero. 

By using the expressions for the photon velocity and accelerations, the 
Boltzmann equations are written as 

(7) 

If the effects of interactions on the photon distribution functions are negligible, 
then the right-hand sides (positive and negative) of equation (7) are set equal 
to zero. For this case, the distribution functions depend only on the boundary 
conditions of the v -space and on the initial conditions. 

Radiation Transfer Equation 

The radiation transfer equation can be obtained directly from the Boltzmann 
equation merely by a change in definition (ref. 2). Instead of the photon distri- 
bution functions, the intensity of radiation at a given frequency (or wave-number 
magnitude) traveling in a specific direction is considered. The specific intensity 
Irl is defined as a scalar energy flux of a given wave number, per steradian, at 

$9 at time t , and in a direction denoted by 6. Thus, the wave-number vector 
is replaced by its magnitude and by the unit direction vector 6, and the specific 
intensity is written as 

1,(+,&t) E hc2n[f+(i,&t) + f-(&r&j (8) 
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As is customarily done, the two orthogonal spin states are neglected in this intensity 
definition. The physical distance along the direction d is denoted by 5. Then, 
the second operation appearing in the Boltzmann equation is transformed as follows. 

A d 
cpil - Ca (9) 

For illustration, &+ and &- are assumed to be zero and TJ is neither a 
function of 5 nor an explicit function of time. Thus, adding the Boltzmann equa- 
tions (eq. (4)) and multiplying by hen yields 

(10) 

The prime on the interaction operator denotes the operation on the specific intensity 
as opposed to an operation on the distribution functions. 

The important philosophical aspect of equation (10) is that it represents 
a division of a vector energy flux into an essentially infinite number of scalar spe- 
cific intensities in an infinite number of directions fi. The equation has a general 
solution for the specific intensity (ref. 1); however, this is not a specification 
of the radiation field as a whole. The practical application of equation (10) (and 
its solution) has been limited to one-dimensional problems. To obtain a solution 
that can satisfy general boundary conditions is difficult, primarily because only 
one differential equation exists in seven independent variables: three position 
variables, three wave-number variables, and time. A useful analogy for develop- 
ing potentially more tractable methods of handling radiation problems is obtained 
with the techniques used in molecular gas dynamics - hence, the concept of the 
photon gas. 

Equations of Change 

In this section, the relation between p -space variables and macroscopic 
parameters in physical space is outlined. The general equations of change and 
the special cases of energy, linear momentum, and angular momentum conservation 
are derived from the Boltzmann equations. The incompleteness of these equations 
in the general case is also discussed (ref. 19). 

The study of a photon gas as an entity involves consideration of average 
quantities such as photon gas energy, linear momentum, and angular momentum. 
These quantities are obtained by integration over wave-number space to obtain 
average values in physical space. The average values contain an inherent weighting 

11 



in wave-number space based on the actual distribution functions. Thus, the 

p-space quantity 4,’ has an average value defined by 

The average value for the whole photon gas is given by 

x+ s,t > ( > 
+ z <$ ( 1 f,t ’ + ‘(I- c,t > ( ) 

(11) 

(12) 

Physical space variables or average values of interest are defined here as 
given in table I. Appendix B contains the corresponding electromagnetic trans- 
verse wave physical space densities, which are compared to the photon gas quan- 
tities in table II (refs . 19, 20, 23, and 24) . A verification of this comparison is 
given in appendix C , in which the electromagnetic quantities are quantized to pro- 
duce the corresponding photon gas relations for energy momentum and pressure 
(ref. 14). 

It should be noted that 

trace “P’ = e; ( ) (13) 

where P is the total-pressure tensor and eT is the total energy density, that 

trace (%i) 5 m = hc(n+ - n-) (14) 

where ^m” is the intrinsic angular momentum density flux, m is the intrinsic angu- 
lar momentum number density, and n is the photon number density, and that 

i = !z(n+++ _ .-;-) (15) 

where i is the intrinsic angular momentum density, A E h/2r, and Q is average 
velocity. Defining net convective velocity 
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and diffusion velocity 

then 

A 

n+v+ +nV A - A - = nV + m A 
prc” 

i= y + $26 

(17) 

(18) 

(19) 

To obtain equations of change, the Boltzmann equations (eq . (7)) are oper- 

ated on from the left with I$ i and integrated over the entire wave-number space. 

By employing partial integration, by considering c, t, and t to be independent, 
and by assuming that any physical quantity will have a regular behavior at the 
limits of an infinite wave number, the equations of change become 

(20) 

The general equation of change is the sum of the positive and negative cases of 
equation (20). 

a 
at ,@> ;1 + v*<c--0 ) = 

n rl s( 
++f+ + o,D-f]d30 

jl 

a+- _ A-- 
+ ‘+ + cy; + a 

( ) 
c x ;I l v I$-> 

n n 
(21) 
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TABLE I .- PHYSICAL SPACE DENSITIES FOR THE PHOTON GAS 

Photoxi gas 

Number density 

Number flux 

Total energy 
density 

Momentum density 

Energy density flux 

Intrinsic angular 
momentum density 

Total-pressure tensor 

Intrinsic angular 
momentum density flux 

Entropy density 

Entropy density 
flux 

Yl 

+-+ 
A 

nV + n-V- 

eT 

,.A 

m 

S 

,. 
u 

hen 

k 

[ 

In (1 + f+) + ln 1 + f’ 

f+ ( 11 f’ 

& In (1 + f’) + ln 1 + ff 
17 

[ f’ ( I f+ 
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TABLE II. - COMPARISON OF PHOTON GAS AND ELECTROMAGNETIC 

PHYSICAL SPACE DENSITIESa 

Photon gas 

-~ ~~ _.~ 

Total energy density: 

eT = 
I- 

hcn(f+ + f-)d3q 
- 

Energy flux density: 

4 = 
J 

hc2fl(f+ + f-)d3q 
- -- 

Momentum: 

2 = h;I(f+ + f-)d3r, J 

Pressure tensor: 

J- * . ^p^ = hcy(f+ + f-)d31, 

Transverse electromagnetic wave 

(Gaussian units)b 

Total energy density: 

<eo> = E <E ’ 2+H2> 

Poynting vector: 

Momentum: 

Pressure = minus Maxwell stress tensor: 

AA 

-‘TO> = 8n L<E 2 + H2>> 

AA AA 
- &<EE + HH> 

trace (^P^) = eT 

aReference 19. 
b^ E = electric field vector; c H = magnetic field vector. 
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The energy, linear momentum, and intrinsic angular momentum equations for a 
photon gas are obtained immediately from equation (21). 

Energy: 

aeT 
at 

+ v.ij = s hcn(D+f+ + D-f-) d3,1 
fi 

Linear momentum: 

+ v.& s hr;(b+f+ + D-f-) d3,1 
fi 

Angular momentum: 

A 
a+ v.fi = 
at s 

;I 
h;(O+f+ - D-f-)d3,1 

+ I(&+ x I;‘) + $i- x i-J 
C 

(22) 

(23) 

(24) 

In equation (22)) q is the energy density flux vector; in equation (23)) g is 
the momentum density. Equation (24) is the total angular momentum equation 
minus $ cross the linear momentum equation since the linear momentum equation 
is satisfied independently. The photon gas with intrinsic angular momenta is an 
explicit example of a Cosserat continuum (ref. 25). 

Equations (22) to (24) are the conservation equations for a photon gas. 
Appendix D contains a comparison of the equations of change obtained from either 
the photon gas formulation or the electromagnetic derivation of appendix B . (See 
also refs. 19 and 20 .) The general equation of change, equation (21)) can be 
used to generate higher order moment equations or constitutive equa.tions such 
as a momentum flux or stress equation or an angular momentum flux or torsion 
equation. These higher order moment equations will not be required in the cur- 
rent formulation. 

Equations generated from the equation of change, such as conservation equa- 
tions (22) to (24) , are never complete. There are always more dependent variables 
than equations. For example, the 7 scalar conservation equations are written here 

16 
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in terms of 28 scalar components of eT, ^f, 4, .g, ii, and ^m^. The 10 existing 

algebraic relations (i .e . , q = c2g, eT = trace (?) , ^P, and ^m^ are symmetric) 

reduce the number of unknown variables to 18. To form a complete set of conserva- 
tion or momentum equations requires additional information, independent of the 
information obtained from the general equation of change. In this formulation, 
additional information is obtained from the variational principle of statistical thermo- 
dynamics as provided in the next section. 

STATISTICAL THERMODYNAMICS 

In this section, the most probable distribution function, the physical identifi- 
cation of independent variables, the complete conservation equations, and limiting 
cases are presented. 

Most Probable Distribution Function 

The basic principle of statistical thermodynamics is the assumption that 
the entropy of a system is a maximum subject to the independent constraints on 
the system (refs. 7 to 13 and 26). Each independent constraint is statistically 
weighted by a Lagrangian parameter, which then becomes a dependent variable 
in the equations of change. The most probable distribution function, producing 
the highest entropy, generally is a function of all these dependent variables. 
In principle, the “average values” in physical space can be expressed in terms 
of these dependent variables; therefore, the number of independent equations of 
change is equal to the number of dependent variables. By this procedure, a com- 
plete set of equations for the system is produced. If the state of a system at a given 
point in space and time can be represented by a specified number of dependent 
variables at that same point, then this thermodynamic principle can be applied to a 
single-point distribution function as is carried out here. On the other hand, as 
pointed out by Kogan (ref. 27)) in a rarefied situation, the -cho.racteristics of a sys- 
tem at a point are highly dependent on the characteristics of the system at neigh- 
boring points. To apply statistical thermodynamics to a rarefied problem requires 
either consideration of a higher order, multipoint distribution function or acceptance 
of the dependent variables in a single-point distribution function as being repre- 
sentative averages over a physical space volume or a time period (or both). There- 
fore, the results of this formulation are not directly applicable to highly rarefied 
or, in the case of radiation, optically thin situations. The degree of rarefaction 
for photons must be measured by the interaction operator D; since photon-photon 
interaction cross sections generally are negligible. 

. 
For illustration, photons having positive angular momentum +h#i will be 

considered first and the more general case later. Since photons obey Bose-Einstein 
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statistics, the entropy density is, as given in table I, 

+ 
S =k (1 + f’) + f+ In d3n (25) 

where k is the Boltzmann constant. The entropy will be largest if the distribution 
function is the most probable distribution function possible for the constraints 
on the system. In this formulation, all constraints are of the form of “average 
values” at a point in physical space and time. 

(26) 

where i indicates one of a series of constraints. In general, the constraints could 
be statistical averages over a smaller or greater portion of the u -space. For exam- 
ple , in classical thermostatics , the constraints on the entropy are of the form 

If the constraints are restricted to the form of equation (26)) the condition 
that the entropy density is a maximum subject to a given series of i constraints 
can be expressed as the variational equation 

(28) 

+ 
where the variables Xi are the parameters weighting the constraints and serve 

as Lagrangian multipliers. If the functions 
+ 

4 
ni 

are not explicit functions 

of f’, of+, vnff, and so forth, the Euler-Lagrange equation (eq. (28)) is simply 

a k In 
af+ I[ 

(1 + f’) + f+ In (29) 
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This equation is readily solved for the most probable distribution function. 

f+ = 1 

+ii 
e -1 

(30) 

This most probable distribution function can be substituted back into average val- 

ue equation (26) to obtain $I; [ Xf (r ,t)] so that the functions Xl become the 

dependent variables for the equation of change. 

With a given number, say L, of independent constraints of the form of equa- 
tion (26)) there are, in turn, L Lagrangian multipliers or dependent variables. 
The entropy of the photon gas is a function of all the constraints on the system or, 

in general, all the L dependent variables s+ (Ai) . The total differential of the 
entropy may be written 

ds+ = as+ dx:, 
a( 

Incorporating equations (25) and (30)) 

ds+ = k<(t;j$ d3f)dAi 

Recognizing that equation (32) contains the differential of equation (26)) 

ds+ 

(31) 

(32) 

(33) 

This, then, is the differential expression between thermodynamic variables that 
provides the thermodynamic significance of the Lagrangian multipliers for each 
value of i. 

(34) 
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Physical Identification of Dependent Variables 

The physical identification of the Xl requires a selection of particular phys- 

ical constraints. In this formulation, the constraints are energy and momentum. 

= hen 
i 

A.+ 
G 
O’2 

= h;l 

1 

The distribution function (eq. (30)) becomes 

Xfhco + i; *hi? 
-1 

- 1 

Because of the form of the distribution function, it may be readily shown that 

The distribution function becomes 

f+ = [ e~;hc+$*$ 1]l 

(35) 

(36) 

(37) 

(38) 

If ?’ is zero, then AT is readily identified as l/kT+ when T, is the tempera- 

ture describing the familiar Planck distribution function. Since these parameters 
are independent 

(39) 
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The distribution function for the case of energy and linear momentum con- 
straints can be written as 

(40) 

Incorporating the Stefan-Boltzmann constant, 

Q ~ 2r5k4 
15h3c2 

(41) 

the average physical values of interest can be obtained in terms of temperature 
and velocities as given in appendix E . Integrals required for obtaining the relations 
given in table II are given in appendix F. 

The total energy densities can be written as the sum of static energy densities 
and kinetic energy densities 

where 

is the static energy den-sity and y is a relativistic contraction factor. Also, the 
total-pressure tensor P is composed of two parts, a static pressure p and a 
momentum flux 

where 6 is a unit tensor and 

(42) 

(43) 

(44) 

(45) 
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The relationships thus obtained are consistent with a simple Lorentz transforma- 
tion (appendix G and refs . 21 and 28)) provided that the static temperature is 
considered to be a relativistically contracted total temperature (ref. 29) ; that is, 

T+ = Y+T+ 
-T -- 

Equation (46) is consistent with the invariant or true scalar characteristics of 
the total entropy 

S’ f 

= !!a 
3c TkT 4V 

c > ‘T 

(46) 

(47) 

where the rest or total volumes are given by 

(48) . 

Thus, equation (47)) being only a function of the rest conditions and independent 
of relative motion, is a true constant. 

The average values of energy and momentum for a point in physical space 
and time are sufficient to complete the conservation equations for a photon gas. 
Appendix H contains an example of a more general constraint in which momentum 
flux or stress is the quantity of interest as opposed to energy. The relationships 
obtained for a nonisotropic photon gas are obvious generalizations of the isotropic 
case through extension of the scalar temperature concept to one of a second-order 
tensor. Conceptually, this generalization is immediately obvious. The scalar tem- 
perature is a statistical weighting parameter for the “conserved” quantity energy. 
A complex system of a large number of particles has many more degrees of freedom 
than are accounted for by the single-particle degrees of energy, linear momentum, 
angular momentum, and mass. The anisotropy in a photon gas can be produced 
by an anisotropy in the physical media or by constraining boundary conditions. 
In general, this anisotropy is distinct from relativistic effects alone. 

Complete Conservation Equations 

The two independent spins of a photon give rise to two independent photon 
gases. Each gas has an energy equation and a momentum equation. These equations 
can be coupled to the extent that the physical medium creates or destroys photons 
of a given spin. It is not possible, however, to obtain a single distribution func- 
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tion that is descriptive of a photon gas having a given amount of energy, linear 
momentum, and angular momentum. Both distribution functions are required for 
this description. A photon gas with energy, linear momentum, and angular momen- 
tum can be easily obtained from a combination of the preceding statistical thermo- 
dynamics results. The optimization relations for the + and - photon gases are 
readily combined if the .two relative volumes are coincident. 

In addition, if only one energy constraint is imposed, then the multipliers for energy 
must be identical. 

T+ 
=T- z T (50) 

The average quantities of interest for a net photon gas are readily obtained and 
are shown in appendix I. 

The familiar thermodynamic relationships hold for the component and for 
the net photon gas. As an example, for the net gas, 

e = ST - p (51) 

An alternative form of t_he average quantities of interest is obtained by incorporating 
a convective velocity V and a relative diffusion velocity U as in equations (16) 
and (17). 

+ = i(ir+ + ;-> (52) 
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For convenience, a contracfion an$a relative contraction, respectively, are defined 
in terms of the velocities V and U. 

The relationships 
in appendix J. 

. 2 
6 2 _ 2V.U y2 = y+ - y- 

2 

= 
c2 y+2 + y-2 

(54) 

(55) 

in appendix I can be rewritten in terms of V and fi, as shown 

i . 
The total-pressure tensor P contains a hydrostatic component, a linear 

momentum flux, and an angular momentum diffusion flux. 

The trace of equation (56) gives the total energy density eT, which also has three 
parts. 

eT 
=3p+g*V+62U ( 1 + 18kTy2 6.i 5 AC (57) 

18 kTy2 * The term 5 - r U is equivalent to an angular velocity. 

The seven scalar equations of motion, equations (22) to (24)) can now be 
written in terms of the seven scalar dependent variables by the use of appendix E. 
The external forces and the interaction operation (e . g. , appendix A) also must 
be specified. In principle, the solution of a problem also requires coupling with 
the energy, linear momentum, and angular momentum equations of the medium in 
which the photon gas exists. 

A complete set of equations of change for an isotropic photon gas now has 
been established. As shown in appendix G, these equations of change are con- 
sistent with relativistic requirements .i To show this consistency for the angular 
momentum requires consideration of R as the antisymmetric part of a second-order 
tensor (ref. 21) . The equations of change are too complex to allow analytical 
solution other than in simple special cases. The following section on limiting cases 
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illustrates some of the simplifying assumptions that make the equations of change 
for an isotropic photon gas considerably more tractable. 

Limiting Cases 

Although laser radiation and many astrophysical sources of emission can 
be highly polarized, thermal radiation is often close to a random polarization state. 

If a random polarization is assumed, then 6 and 6 2 are zero, as is the solution 
of the, angular momentum equation (eq. (24)). For this case, the physical space 
dependent variables take on a much simpler form, as given in appendix K. 

The limit of V/c approaching unity corresponds to a unidirectional photon 
flux in which temperature, pressure, and entropy approach zero. In this limit, 

eT h lim 6 + - V 
V 41 c2 
c 

and, for a finite momentum, 

lim y6T4 j constant 
V 
c ,l 

(58) 

(59) 

At the other extreme, if V/c is small compared to 1, the binomial expan- 
sion of the variables in appendix K is useful as given in appendix L. This approxi- 
mation provides for less cumbersome variables and should be applicable in media 
for which temperature gradients are not extremely severe. 

Although the equations are complete in principle, analytical solutions are 
difficult except for the most elementary cases. In addition, the practical application 
of the photon gas formulation to situations involving finite boundaries or walls 
requires a specification of physically realistic boundary conditions. At a wall, 
however, an optically thick restriction generally is not valid. Thus, the applica- 
tion of this photon gas formulation to finite boundaries requires, in general, 
restricted equations at the wall or, in analogy with physical gas dynamics, a 
boundary-layer or slip-layer formulation. 
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CONCLUSIONS 

A statistical treatment of photons, analogous to molecular gas dynamics, 
has been used to provide equations of motion for a thermal radiation continuum. 
The photon gas equations have been shown to be identical to equations of motion 
obtained from an electromagnetic formulation based on Maxwell’s equations written 
in a microscopic form. The correspondence between the two formulations has been 
established by a quantization of the transverse electromagnetic wave form of energy, 
momentum, and stress. Nonequilibrium statistical thermodynamic principles have 
been applied to the photon gas to determine the most probable distribution function 
or the highest possible entropy subject to the constraints on the system. This 
application has provided a truncation of the equations of change or the moment 
equations at an arbitrary level. The maximum entropy principle has been applied 
to an equilibrium statistical thermostatics derivation of the energy, linear momentum, 
and intrinsic angular momentum equations for an isotropic photon gas. These 
conservation equations are obtained in terms of a temperature, an energy average 
velocity, and an intrinsic angular momentum diffusion velocity. Comparison of 
these relationships with a Lorentz transformation has provided the relativistic 
variation of the isotropic photon gas temperature and established the entropy as 
a true scalar. 

An example of extending statistical thermodynamics to a more general non- 
equilibrium application such as a stress or momentum flux constraint has also been 
presented. This process results in the definition of a second-order tensor tempera- 
ture that is descriptive of the nonisotropic gas or of a stress state. 

Although this photon gas formulation provides, in principle, a complete 
set of differential equations, the solution of these equations for a practical problem 
is quite complex. In addition, the treatment of more general nonequilibrium problems 
such as radiation in optically thin media, the boundary equations at a medium inter- 
face, or the spectral distribution of radiation in a real medium requires extensions 
of this photon gas formulation by consideration of more general constraints. 

The prime application of this work resides in rendering an improved descrip- 
tion of thermal radiation transport; potentially, an important application also exists 
in producing a vivid demonstration of the power of statistical thermodynamics from 
the vantage point of information theory. Information theory permits a rational 
truncation of statistical moment equations based on probability concepts rather 
than on simple particle mechanics. Thus, statistical thermodynamics is applicable 
to nonequilibrium phenomena and to macroscopic phenomena such as fluid 
turbulence. 

Lyndon B. Johnson Space Center 
National Aeronautics and Space Administration 

Houston, Texas, February 18, 1975 
909-44-39-00-72 

26 



APPENDIX A 

THE INTERACTION OPERATOR 

The right-hand side of the Boltzmann equation represents the net rate of 

photon production due to interactions with the medium. Thus, D ‘ff’($, t ,t) is 
representative of this net production of photons at the phase space point i?, fi in 

the volume d3r d3n and between the times of t and t + dt. The net production 
is the difference between the total production and the depletion or extinction. 
The total production consists of spontaneous emission, induced emission, and scat- 
tering into the six-dimensional phase space, or u -space, volume element. The 
depletion is due to absorption and scattering from the u -space volume element. 

The relative importance of various interaction processes depends on the 
physical situation. A comprehensive treatment of photon-media interactions is 
beyond the scope of appendix A; however, the basic aspects of absorption, emis- 
sion, and scattering are considered to the extent that these interactions tend to 
drive the photon gas to a thermodynamic equilibrium with the media (ref. 18). 

Consider a molecular gas of several species n, each having a particle con- 
centration of [N,] . Spontaneous emission by these particles may proceed from 

an energy state i to an energy state j. 

N ni &N nj + photon (hh) ’ (Al) 

The discrete energy levels for the particle are obtained from the quantum mechanical 
description of the possible states for the isolated particle. These states may be 
degenerate in terms of the same energy. This degeneracy for the energy state 
i will be denoted by gni. 

Let the probable spontaneous emission rate per particle of species n, in 
the i energy state, be represented by CA nij (;I ,t) for photons of energy hco . 

The quantity A nij has the dimensions of a cross section and is directly propor- 

tional to the Einstein transition probability of spontaneous emission. The cross- 
section dimensions are retained since only the emission in one specific direction 
given by ;1 is considered. The total probable rate for spontaneous emission at ,. 
r, ;I, and t is then 

CCCNni (~ ,t)CAnij (~ ,t) 
ni j (AZ) 
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The summations are only over possible combinations that can produce a photon 
of wave number t. In addition to this spontaneous emission, there is an induced 
emission that is proportional to the number of photons present. Thus, the total 
probable rate of emission is 

[l + f’(‘,;l,t)lCCCNni(‘,t)CAnii I~,t) (A31 

The probable rate of absorption p,er particle of n in the state j will be 
represented by the cross section A nji(~ ,t> . This cross section is for the reverse 

of the reaction shown in equation (Al). The total probable absorption rate at 
$9 ;I, and t is 

f’(~,;I~t)~~~Nnjj;.‘t)CAnji(‘7,t) 
n i j 

(A41 

The difference of equation (A3) minus equation (A4) is the net rate of photon pro- 
duction due to absorption and emission. 

0%’ =ccc c [(I + f+)NniAnij - f’NnjAnji] 
Xi j 

absorption and 
emission 

(A51 

If the cross section for a particle of species n to scatter a photon of wave 
number fi to a photon of wave number fi’ is defined as Bn (;I, fi’> , then the net 
rate of photon production due to scattering is 

D’f’ = C~~~~‘PB,(~~,i)f~(i,i’,t)N~(;,t) - Bn(i’;l~)f’($,;,t)Nnc;‘,t)] (A6) 
n 

scattering 

If the molecular gas is assumed to be in a state of local thermodynamic equi- 
librium at a local temperature T (i? ,t> , then, by Boltzmann statistics, 

hcrl N g.-- 
-=nle kT ni 
N 

nj I? - 
n1 

(A71 
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where k is the Boltzmann constant. The energy hen is the difference between 
states i and j. In addition, if the gas is in equilibrium, the principle of detailed 
balance requires that the probability for a microscopic process must equal the 
probability for the reverse process. This relationship provides the rationale for 
the assumption that 

w3) 

The net rate of photon production for absorption and emission may now be 
written 

hcrl 
gf’ 

= ’ CCCNnjAnji (1 + f’>e kT - f+ 1 
ni j 

absorption and 
emission 

or 

absorption and 
emission 

A true absorption coefficient has been defined as 

k0,(‘,~,t) ~ CCCNnj(‘,t)Anji(;l,t) 
ni j 

(A91 

(All) 

The induced emission term appearing in equation (AlO) appears to be more 
like a negative absorption. Thus, an effective absorption coefficiert is defined 
as 

kn(G,6,t) - kz(;,G,t) 1 - e ( -%) 
L412) 
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and a Planck photon distribution function as 

These two definitions may be incorporated into equation (AlO) to obtain 

D’f’ = - ck ,(f& - fP) 

absorption and 
emission 

(A131 

6414) 

The physical significance of P may be obtained readily by consideration 
of the case in which the solution of equation (A14) is zero for an arbitrary absorp- 
tion coefficient, This value implies that the molecular gas and the photon gas are 
in a state of mutual or complete thermodynamic equilibrium. Thus, the Planck 
distribution function is the one that would not be altered by the molecular gas. 
It might b_e considered as being defined by the temperature T, whereas the temper- 
ature T (r , t) is a local property of the molecular gas. 

As a special case, 
is independent of ;I. 

it can be assumed that the effective absorption coefficient 

+;l,t) - k&t) (A151 

In equation (A15), k is the gray gas absorption coefficient, and this assumption 
is commonly referred to as the gray gas assumption. In general, it is not a very 
realistic assumption; however, it retains the basic interactions of emission and 
absorption and greatly simplifies the equations. 

The physical features of the scattering interaction term are best realized 
by considering the equations of change. The prime effect of the scattering term 
is a dissipation of the net relative momentum between the medium and the photon 
gas. 

30 



APPENDIX B 

ELECTROMAGNETIC FORMULATION OF RADIATION 

In this appendix, Maxwell’s equations, electromagnetic energy, electromag- 
netic momentum, and an electromagnetic phase space are considered. 

MAXWELL’S EQUATIONS 

In comparing the equations for a photon gas with those for electromagnetic 
waves, it must be noted that the two approaches are complementary but distinct 
(ref. 19). The comparison in this appendix is in terms of macroscopic or statis- 
tical average quantities. Brackets < > are used to denote statistical averages 
of ‘the enclosed quantities. In general, these averages have a variation with position 
and time (r ,Lt> . This average is analogous to the statistical average for photon 
transport as presented in appendix C . 

The macroscopic electric and magnetic field intensities are defined as <e> 
and <H > , respectively. In addition, the displacement vector and the magnetic 
induction vector are defined as <D > and <B >, respectively, in Gaussian units. 

h * h 

<D, = <E, + 471<P> (Bl) 

and 

A A .-. 

<B, = <H> + 4sr<M> 032) 

In_equation (Bl) , <6> is the polarization vector of the med^ium; 
<M> is the medium magnetization vector. In free space, 

in equation (B2) , 
<P> and <R/I> are zero. 

The familiar form of Maxwell’s equations (in Gaussian units) (refs. 23 and 
24) is 

A 

V.<D, = 4lT6 (B3) 

A 

v*<B> =o (B4) 

A ia * V x <E> + -- <B, c at =o (B5) 
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and 

v - ia A x <H> - --<J)> 
c at u3f-Q 

In equations (B3) and (B6), the current is the charge density 6 times the average 
charge velocity c. 

The macroscopic form of Maxwell’s equations cannot be used for a compari- 
son with the photon transport approach. It is necessary to revert to the microscopic 
form of Maxwell’s equations, transform this form to equations of motion, and then 
find the rate of change of the average values (ref. 24). Thus, the macroscopic 
energy and momentum equations for the electromagnetic field cannot, in general, 
be obtained from the macroscopic forms of Maxwell’s equations. This restriction 
is probably one of the major sources of difficulty encountered in attempts to include 
absorption and emission coefficients in electromagnetic field approaches to radiation 
transport. The microscopic form of Maxwell’s equations is effectively the same 
as the equations obtained when the brackets are removed from all the terms in equa- 
tions (B3) to (B6). 

ELECTROMAGNETIC ENERGY 

The energy density of an electromagnetic field is assumed to have the form 

A 
fe r,t > ( ) 

1 A* AA 
= .*; <E*D + H-B, (B7) 

To compare this electromagnetic energy density with the energy density of a photon 
gas, two components 

(e, = <e 
0 ) + (e > 

m 

where 

12 2 <e>E-<E +H, 0 8~ 

and 

(Bf3) 

039) 

(BlO) 
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are defined. In general, the energy density <eo> contains more than just a trans- 

verse electromagnetic wave energy. It is assumed that, for a basically neutral 
and dilute gas, <eo> may be considered as the transverse wave energy of the 

field. On this basis, <eo> is compared to the total photon energy density eT. 

If this assumption is not made, it is necessary to divide <e8> into two additional 

parts for a comparison. The energy <em > is the field energy due to the polariza- 

tion and magnetization of the material particles. On the average, for a neutral 
gas, <em> is negligible except for localized fluctuations in the immediate vicinity 

of a material particle. In the absence of a medium, <em> is zero, and <eo> should 

be identically equal to the total photon energy density eT (table I). 

It is assumed that the Poynting vector 

A 
<s> = CA A 

47 <E x H> (Bll) 

represents a transverse wave energy flux. Although some question exists asJo 
the general interpretation of <S > as a physical flux of energy, the vector <S > 
appears to be a reasonable assumption for a transverse wave field. As with <e6>, 

it is assumed that the Poynting vector contains only contributions from the trans- 
verse waves, or that the energy flux associated with longitudinal waves is negligi- 
ble. If these assumptions are valid, then the Poynting vector should be compara- 
ble to the photon energy flux vector q. This definition of the Poynting vector 
differs from the conventional use of the “basic” magnetic field B (ref. 23) . 
This difference is made intentionally to show analogy with the photon gas vacuum 
energy flux. 

The energy equation is obtained from a scalar combination of the microscopic 
forms of equations (B5) and (B6). By employing the microscopic form of equa- 
tions (B3) and (B4) , performing a statistical average, and using the definitions 
(eqs. (B8) and (Bll)) , the following is obtained. 

a h -a6 A ati A 
z ‘eo’ + V.<S, = - <E.- + Ha-> - at at <6EG-, 0312) 

Equation (B12) is to be compared to the photon gas energy equation (eq. (22) 
and table II) . In the absence of a medium, the right-hand sides are equal to zero, 
and the quantities on the left-hand sides should have a one-to-one correspondence. 
When a dilute medium is present, this correspondence depends on the assumptions 
noted previously. It is also noted that if photon scattering processes are conserva- 
tive, they should not appear in equation (B12). However, absorption and emission 
are represented on the right-hand side of equation (B12) . 
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ELECTROMAGNETIC MOMENTUM 

The momentum of an electromagnetic field is assumed to have the forfi 

1 
,g(S,t), = - 4lTc 

(fi x j$ 

It is desirable to separate this momentum into two components. 

(B 13) 

(Bl4) 

In the absence of a medium, the momentum of the field is the Poynting vector 

divided by c2. 

When the Poynting vector is_examined for a simple plane monochromat$ 
transverse wave, it is noted that S is not constant. Rather, the value of S 
oscillates with time and periodically becomes zero. Even this behavior, however, 
is not inconsistent with the similar but separate representation of q for one pho- L 
ton. It is recalled that the energyA of a photon must also be specified over a finite 
period. The Poynting vector <S > is an average over an assumed large number 
of small transverse waves. Similarly, q is the average energy flux for a large ’ 
number of photons. 

To obtain a momentum equation, the vector produc; of fi with a microscopic 
form of equation (B5) is added to the vector product of B with a microscopic form 
of equation (B6). Vector identities are used to rearrange the result, which is 
then integrated over wave-number space to obtain 

a A 
j-j (l3, - v.< Fo’ = -4+ 4 (V’i) + ii (v-ii), 

+G x ( 

h 
V xE 1 +fix b ) U315) xi> 

as 
The Maxwell stress tensor for a pure electromagnetic field has been defined 

0316) 
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where 6 is the unit second-order tensor. The physical significance of this second- 
order tensor is a stress due to the relative momentum flux of the vacuum compo- 
nents of the field. The transverse portion of the ten:or should correspond to the 
negative of the photon gas relative pressure tensor P (table II). 

In^further development of the momentum equation, the relationships for 
f, and B (eqs. (B3) and (B4)) are included to obtain 

l a <;, - vu?, = 
A 

-<6 c -- 
c2 at 0 

E + - x 
C 

Equation (B17) will be taken as the final form of the momentum equation and should 
be compared to the photon gas momentum equation (eq. (23) and table II). 

As in the energy equations, in the absence of a medium and any external 
forces, the right-hand side of equation (B17) is equal to zero. The right-hand 
side of equation (B17) can be manipulated into many forms. The first term is the 
normal form of the Lorentz force, the second term is the photon scattering, and 
the last term is the emission and absorption. 

AN ELECTROMAGNETIC PHASE SPACE 

The discussion of electromagnetic phenomena was initiated with the macro- 
scopic form of Maxwell’s equations. The statistical or bracket average used to 
define the macroscopic values of the fields is a classical sum, or integration, over 
an independent wave-number space. The requirement for this statistical average 
becomes apparent when a comparison is made with the photon gas formulation. 

The general transverse electromagnetic field cannot be discussed without 
considering it as being divided into component waves. This division is physically 
reasonable because the field cannot, in general, be associated with the motion of 
one large charge. Because the component waves can have various directions and 
frequencies, it is convenient to consider a wave-number vector. The analogies 
with the photon gas are straightforward. For example, a wavelength greater than 
the extent of the physical volume element under consideration is difficult to observe. 
However, the wave nvmber , ihe position, and the time must all be independent. 
It is not certain that E and H are the best parameters to describe the transverse 
waves in this space; however, they do offer advantages and will suffice for this 
discussion. 

The effect of the wave-number space average on the form of Maxwell’s equa- 
tions is negligible, since the equations are linear in terms of the fields. However, 
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the energy and momentum equations are not linear in the fields, and their forms are 
definitely affected by the wave-number space average. Explicitly, 

This difference can be illustrated by the following general tensor identity, which 
is derived for an explicit relation between Maxwell’s stress tensor and the Poynting 
vector. 

?,.5, - c+iS = i;(e,2 - $S2) (B19) 

This algebraic tensor equation only holds in what might be termed an electro- 
magnetic phase space. In general, equation (B19) does not hold when written in 
terms of th_e corresponding statistical or macroscopic variables. In the special case 
in which S is equal to zero, no net energy flux oscurs in any direction. For sim- 
plicity , it is assumed that the symmetric tensor TO has been diagonalized. Under 

these restrictions, equation (B19) produces three relations: 

T 2 0,xx 
= T 2 = To zz2 = eo2 

OSYY 9 U320) 

However, because the trace of -y. is eo, equation (BlO) is identically equal to 

zero, which indicates the absence of radiation. If this physical interpretation of 
the Poynting vector is correct, equation (B20) is not valid for the macroscopic 
quantities. However, the analogies drawn in_this study tend to support the physical 
interpretation given to <e >, 0 <S>, and <T >. 0 Equation (B19) is also valid for 

the six-dimensional phase space, or AuA-space, quantities associated with the 
photon gas parameters eT, 4, and P. In general, the electromagnetic phase space 

is a six-dimensional p-space. For example, 

i = i(s,g,t) 0321) 

The prime on the wave-number vector distinguishes the vector from a direct associ- 
ation with a photon wave number. 

The Poynting vector and other quantities familiar to physical space are not 
necessarily fundamental to the 1-1 -space. For example, 

6(&&t) = 4%[i(;,;‘,t) x ii( 0322) 
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is a double-valued function of Q A1 for the two polarization components. 

The most important result of this statistical treatment is that the stress tensor 
in a macroscopic sense cannot, in general, be represented by the microscopic form. 
However, this result does show that the macroscopic electromagnetic formulation 
is incomplete in the same sense in which the photon gas formulation is incomplete 
without the application of statistical thermodynamics, The algebraic relation of 
equation (B19) is valid for the macroscopic quantities for a one-dimensional phys- 
ical space. For this case, equation (B19) is merely a scalar identity. 

Although a classical electromagnetic phase space is somewhat abstract, the 
quantum mechanical concept is straightforward. As shown in appendix C , the 
quantized forms of eo, To, and S are precisely the same as those of the photon 
gas quantities. 

The comparison of the left-hand sides of the energy equations and the 
momentum equation (table II) is reassuring, both with respect to the physical 
quantities and with respect to the mathematical operations. A comparison of the 
right-hand sides of these equations requires a more extensive study. 
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APPENDIX C 

QUANTIZATION OF ELECTROMAGNETIC VARIABLES 

Correspondence between the variables and the equations of change for a 
photon gas and a statistical (yet classical) form of the electromagnetic formulation 
is given in appendix B . The statistical average or bracket notation, however, 
is a quantum mechanical concept. To establish the correspondence between the 
bracket average and the photon gas wave-number average requires a quantiza- 
tion of the electromagnetic variables associated with transverse waves as given 
for example by Heitler (ref. 14). It should be noted that the quantization and 
the statistical averaging are conceptually and mathematically distinct. For a clarifi- 
cation of this point, refer to reference 30. 

The electromagnetic vector potential is expanded by the use of a complex 
series of plane waves. 

.A L_ 

1K A l r 

. Qf 
f I I 

l- 
f C 

9x = 9A e 

(Cl) 

cc21 

!C3) 

Here, jh is a wave-number vector for the plane wave, 6 A is a unit vector in 

the direction of the wave polarization, and * designates complex conjugate. 
For transverse waves, 

v.a; = 0 CC41 

^f which makes the eh always perpendicular to E x. Equation (C2) is a result of 

the normalization over the volume integral. 

CC51 
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where 15~~ is the Dirac delta function. The scalar coefficients in equation (C3) . 

are normalized to the photon density 

where the photon number may be equated with the photon gas density 

CC61 

(C7) 

The electromagnetic field strengths are obtained by the operator representa- 
tion of the vector potential. 

fi= lad; . 
-cat-1 c ( KA 9;“; 

+*A +* -*,-* 
- qa Aa + q;$ - qa Aa 

a 

ii=V XA-i 
+ 

a ( 
qa i, x ii;) - q;*(Pa x ii;*) 

a 

+ cl& x A;) - q;*(Ga x A;*)] 

where the scalar coefficient time derivatives are replaced with the operator 
representation 

a +* 
zqa 

- +i>qi* 

((38) 

(C9) 

(ClO) 

(Cl11 
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The bracket operation for energy, for momentum, and for the total-pressure ten- 
sor is obtained directly from the operators in equations (C8) and (c9) . 

Energy density: 

= 22 ( + Ei2 + “x” + Hi2 + HX” 

a 

C( 
+ +*A+ A t* - -*A - * -* = 

qxqx Aa l Aa + qpla Apa 
) 

a 

Momentum density: 

1 ,, 
( 

n A 

2 
<s> = (ExH’ I 

A+ ,.+ *- A- 
= 

Ea 
xH +E A a xH a 

Since 

h A+ h A +* 

K(A~ = K(A~ = 0 

(Cl21 

(C13) 

(C14) 
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then 

Total-pressure tensor: 

2 + k*A+h+* 
k;ii; = K~ qAqA AXAX 

= K 

-f In a similar manner, since eX and 2 x are orthogonal, 

*+A+ 
H-H- = hCK n a h 

x 

(Cl51 

(C16) 

(Cl71 

(Cl81 
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Therefore 

(C19] 

Thus, the quantization of the transverse electromagnetic field variables substantiates 
the photon gas representation. 
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APPENDIX D 

COMPARISON OF ENERGY AND MOMENTUM EQUATIONS OBTAINED FROM THE 

PHOTON GAS AND AN ELECTROMAGNETIC FORMULATION 

In this appendix, energy and momentum equations obtained from the photon 
gas and an electromagnetic formulation (ref. 19) are stated for comparison. 

ENERGY 

Photon Gas 

;e T 
- + v l ;i = 

at / 
hcn( o+f+ + D-f-) d3,1 

;i 

Electromagnetic 

a at 'eo' to- A <S>= -<E. 

+ V-PM 

MOMENTUM 

Photon Gas 

s 
h;l (o+f+ + D-f-) d3n 

6 

+ 1 ;+ 
C ( 

x i’) + ;(s- x g-) 

Electromagnetic 

i- arjI = --<E x - + 
C at g + tii-) x ii> 

+ 4<v=; - 6) + ii<v*iI>~ 

(22) 

CD11 

(23) 

UW 
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APPENDIX E 

ISOTROPIC PHOTON GAS PHYSICAL SPACE DENSITIES 

In this appendix, terms of isotropic photon gas physical space densities 
are defined on the basis of the photon distribution function in phase space f. 

Photon number: 

Total energy: 

V2 
e 

+T 
= 2: T+4yk4 + ; z Tk4yi6 f - 

C2 

Linear momentum: 

Intrinsic angular momentum: 

20 h i&z+-- 
- 2&2 ’ Tk3y+4 ‘* 

Total pressure: 

(40) 

(El) 

(E2) 

(E3) 

(E4) 

(E5) 

44 

I 



Intrinsic angular momentum flux: 

iii 10 h 
Ii = km EcrTi (E6) 

Entropy: 

Entropy flux: 

6 = s+v, - 

where 

trace k) = 0 

(E7) 

W8) 

(E9) 

(ElO) 

(Eli) 
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APPENDIX F 

INTEGRALS REQUIRED FOR FORMULATION 

The evaluation of integrals over wave-number space is simplified by appli- 
cation of the following mathematical relationships. In this appendix, x, u, 
and ‘p are dummy variables, n is a dummy numeral, and a is an arbitrary 
constant. 

( X 
-1 = 

e - 1) = 
c 

e-nX 

?l=l 

In (1 - emX) = 2 i ewnx 
n=l 

Q) 

c 

1 4 

2 
=- 

9”o 

n=l 

OD 

c 

1 3 4 

z= 25.79i36 . . . 
+ 

n=l OD s ’ xe -aXdx = sl 
a 

0 

II +l 

J 
sin cp d<p = 

s 
du 2(1 + ia2) 

(1 + a cos ‘p) 4 
-1 (l 

+ au) 
0 

4 = (1 - a”)3 

+1 

s 
udu = -8a 

I1 + au) 4 
-1 3(1 - a2)3 

WI 

03) 

(F3) 

W4) 

W5) 

0%) 

(F7) 
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+l 

du = 2 

(l+au13 
2 

-1 

+l 

s udu = -2a 

(1 + au)3 (1 - a2)2 
-1 

Also, the Stefan-Boltzmann constant is defined as 

~ = 2n5k4 

15h3c2 

WV 

0’9) 

(411 

An example of the application of these integrals to the evaluation of the photon gas 
densities is provided in appendix H for the nonisotropic photon gas. 
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APPENDIX G 

THE LORENTZ TRANSFORMATION 

For consideration of the relativistic aspects of a photon gas, a four- 
dimensional space of position and time is required. The position vector in this 
space (ref. 21) is 

I 

6 
x = 

u ict 

i 

X 

Y 
= 

Z 

ict 

An element of length in this space is an invariant scalar 

ds E - c2 dt2 - dr2 

The generalized velocity is a four-space vector 

* dr where V 3 - dt 
The velocity is a true vector in a four- 

dimensional space; therefore, its magnitude is a true scalar. 

vuvp =y2v- 
( ) J- 1 =-1 

(Gl) 

((32) 

(G3) 

(G4) 
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The stress-energy density tensor in this four-dimensional space for the photon gas 
and transverse electromagnetic waves (refs. 14, 22, and 28) is 

(G5) 

This four tensor has an invariant magnitude 

T =e - 
lJlJ T trace (^I;) = 0 um 

To transform four vectors or four tensors^from one coordinate system to another 
(prime ‘) moving at a constant velocity V requires the application of the Lorentz 
transformation matrices (ref. 21) . 

ii +iyc Y 1 

( 2s * 
x+X- 

Y+l 7 -- 
) 

iyV 
C 

( 
. ^6^ 2VV + Y- 

Y+l c2 > 
+i yz 

A 
-i y: +Y 

The transformation for four vectors and four tensors is obtained by 

t 
A =a 

lJ uvAv Av’ = z A 
Vi-J IJ 

I 
B =a B ‘g 

PV uo $1 xv B$X = s 9l.l Bpvav x I 

((-37) 

((33) 

(G9) 
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If a photon gas is at a complete thermodynamic equilibrium and at rest in 
a given coordinate system, the stress-energy density four tensor is 

0 = i"T 4 
-x 0 [ 1 3co 0 +3 

(Cl01 

To an observer moving with a velocity G with respect to this static photon gas, 
the stress-energy density four tensor is 

= 

1 
-; - 4y2B 

4a 4 
ST0 

c2 

2C -i4y 5 

-i4y2 f 
C 

+3 + 4y 2v2 - 
c2. 

(Gil) 

This tensor is identical to the stress-energy density four tensor obtained through 
statistical thermodynamics for the photon gas with both an energy and a momentum 
constraint (appendix K) providing 

TO = yT ((312) 

Therefore, T is the apparent or static temperature seen by a general observer, 
whereas To is the total or rest temperature of the photon gas. On the other hand, 

the distribution function is not affected by relative motion even though the tempera- 
ture and wave number are. The distribution functions in rest and moving frames, 
respectively, are 

f= e 

(Gl3) 

(G14) 
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If f=fo and To=yT, then 

nO 
i+ = n l- -.-y ( > c n (Gl5) 

which is the correct Doppler relationship between the relative wave-number magni- 
tudes for a given photon (ref. 14) . Thus, the characteristics of a photon gas moving 
with a velocity can be obtained either through statistical thermodynamics with a 
momentum constraint or by a Lorentz transformation of a static photon gas. 
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APPENDIX H 

THE NONISOTROPIC PHOTON GAS 

Statistical thermodynamics is classically restricted to the determination of 
the most probable distribution function, producing the highest entropy, subject 
to the constraint of energy. The extension to constraints involving other conserved 
quantities, such as linear momentum and angular momentum, is straightforward 
as given, for example, in this report. However, since the concepts of statistical 
thermodynamics can be obtained from information theory, the principle should 
be applicable to general independent constraints beyond the simple body parameters 
that are conserved (refs. 7 to 13 and 26). For example, a photon gas may have 
the highest entropy possible under the constraints of the initial conditions, the 
boundary conditions, or the medium and not be isotropic. This case is considered 
as a demonstration of the concept. For simplicity in notation, a randomly polarized 
photon gas is assumed. The extension to the case of intrinsic angular momentum 
is obvious but cumbersome. 

Consider the constraints on the photon gas to be the total-pressure tensor 
and the momentum density 

F=2 hc 
s 

G-i Tf d3r, 

fi 

i= 2 
s 

h;if d3,1 

rl 

(HI) 

032) 

where 

f+ = f- : f (H3) 

The most probable distribution function under these constraints is obtained 
from the variational equation for the maximum entropy (eq. (28)). 

6 

G-J41 
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Here, 7 and ^i.V are the tensor and vector multipliers for the total-pressure 
tensor and momentum, respectively. Equation (H4) produces the distribution 
function for a nonisotropic, randomly polarized photon gas with momentum. 

The unknown Lagrangian multipliers are, in principle, obtained through 
equations (Hl) and $2) . In, this case, however, it is simpler to first obtain the 
entropy in terms of 6 and V. Defining 

the entropy integral, based on equations (Fl) and (F2), becomes 

s = 2k slj; + hcn+-nhca’d3n 

If spherical wave-number coordinates are used 

Using equations (F5), (F3), and (41) f the entropy becomes 
,2lT 77 

35 (5 1 
3 k3F[d0 d”i” (p3drp) 

(H5) 

W6) 

(H7) 

(H8) 

‘U-1 
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To describe the nonisotropic state, a tensor temperature is defined. 

where 

The scalar temperature with its classical significance is retained. 

T 5 f trace (?) 

The entropy for a nonisotropic photon gas may be written 

where 

1 y f 

V2 J- l-- 
c2 

(HlO) 

0311) 

(H12) 

(H13) 

(H14) 

(H15) 

and a dimensionless number that is only a function of the rest principle direction 
temperatures (T22/T11, T33/T11) has been defined 

(H16) 
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In general, @ is an elliptic integral. This integral has been computed 
numerically and is tabulated for the rest condition together with an approximate 
expression @ ’ in table H-I. It is obvious from this table that CJ is a very weak 
function of the deviations from an isotropic temperature condition. 

The entropy for a nonisotropic situation is always lower than the isotropic 
entropy for the same energy, a condition verified by the fact that 

[t trace (?)I3 1 Ii/m (Hl7) 

The randomly polarized, nonisotropic photon gas variables can be expressed in 
the integral forms 

0318) 

In (1 + f1 + f In 

(hc)3\%n/, J a 

;z 2kc In (1 + f) + f In 

(H20) 

(H21) 
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i - 2 
/ 

h;lf d3,1 = 

;i 

0322) 

F E 2 
/ 

hc rl ti f d3a (Hz31 

;1 

The third-order tensor A; appears in the third moment or stress equation, which, 
from equation (21) , is 

(HZ51 

for D'=.D- z D and &' = k- AAh 
= 0. Reductions in w are 6 (in index notation). 

W . . . 
93 

= w.. . = w... = q. 
311 331 1 
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In addition, the trace of equation (H25) is the energy equation. Noting the pattern 
in equations (H18) to (H24), the following interrelationships may be obtained. 

0-W) 

s = &n 
5 (H28) 

a 

i= 

J 
;f d3,1 

C 

s 
f d3,1 

6 = sir 

g-+----_p 1 as-- 
4k a^BI 

where ^p^ is the static-pressure tensor. 

W29) 

(H30) 

(H31) 

(H32) 

(H33) 
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The expressions containing derivatives with respect to the Lagrangian multi- 
pliers are, for example, 

as 

Tl 

as a.5 - 

%2 T3 

as as 
$’ a821 

as as 

aszz %23 

as as as 

%31 =32 %33- 

Equations (H33) and (H26) may be used to relate the momentum and velocity. 

It is noted that, since 

“ii. as . 
-$ 

= -3s 

(H34) 

(H35) 

W36) 

it: a$ (In @) = 0 W37) 

the thermodynamic relationship between entropy and the local nonisotropic pres- 
sure is 

W38) 
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Equation (H36) is readily obtained through the indicated operation on equation 
(H20). In a similar manner, equation (H37) follows from the same operation on 
equation (H16) . 

The momentum and pressure for a nonisotropic photon gas may be written 
in a more convenient form. 

W39) 

(H40) 

(H41) 

Equation (H25) and the momentum equatio? form aA_complete ,s,et of nine equa- 
tions in terms of the nine dependent variables, V and T (i .e . , T is symmetric) . 
The solution of these equations in general would be quite difficult. The first obvious 
simplification is to approximate g and p by the dominant terms in equations (H39) 
and (H40). 

-- 4a- 4- 
P- ST Y @T I I 

(H42) 

(H43) 

0544) 

The relationships obtained for a nonisotropic photon gas are obvious general- 
izations of the isotropic case through the generalization of the scalar temperature 
concept to one of a second-order tensor. Conceptually, this generalization is 
immediately obvious. The scalar temperature is a statistical weighting parameter 
for the “conserved” quantity energy. A complex system of a large number of par- 
ticles has many more degrees of freedom than are accounted for by the single- 
particle degrees of energy, linear momentum, angular momentum, and mass. 
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TABLE H-I. - ELLIPTIC INTEGRAL ch a’ b 

r 1 

T11’T22 T11’T33 @O @o’/@o In o. 

1 1 1 .ooooo 1.00 0.0000 
1 2 1.08904 1.00 .0853 
2 2 1.1087 1.01 .1032 
2 4 1.3139 1.005 .2730 
2 8 1.70088 .962 .53115 
2 20 2.55385 .867 .9376 
1 4 1.3440 .978 .2957 
1 10 1.9613 .904 .6736 
2 10 1.86882 .936 .6253 
4 4 1.61757 1.020 .4809 
4 10 2.12456 .963 .7536 

10 10 2.9469 .916 1.8675 
5 10 2.2728 -- .8210 

10 10 2.9469 -- 1.8075 
10 20 3.9966 -- 1:3854 
10 40 5.5388 -- 1.7118 
10 100 8.6490 -- 2.157 

aDefined in equation (H16), 

b@ 
A 

os~ when Vjc=O. 
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APPENDIX I 

ISOTROPIC PHOTON GAS WITH LINEAR MOMENTUM AND 

INTRINSIC ANGULAR MOMENTUM 

In this appendix, terms for an isotropic photon gas with linear momentum 
and intrinsic angular momentum are defined. 

Photon number density: 

20a 3 4 
n=n~T ( Y, +Y- 

4 
) 

Total energy density: 

Momentum densi&: 

= tiT4 6 4 3c 1 

Intrinsic angular momentum density: 

i=20 hoT3 -- 
27 c2k 

(11) 

(12) 

(13) 

(14) 
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Total pressure: 

Local pressure: 

2aT4 p = ; = 3c y-4 

Intrinsic angular momentum density flux: 

ifi = 1Oh 27 E oT3 (Y+~ 
ir+c+ i+- 

- yB2)T + 7 Y+~ (ZY+~ - 1) - 7 Ye2 (2ys2 - 1) 

Intrinsic angular momentum number density: 

m = trace (i) = %;o T3(r 4 - y “) 
+ - 

Entropy density: 

S = ; ;T”(y+’ + y-4) 

Entropy density flux: 

-- 
+ + Y- 
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(16) 

(17) 

(18-j 

w-0 

(110) 
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APPENDIX J 

ISOTROPIC PHOTON GAS WITH LINEAR MOMENTUM AND 

INTRINSIC ANGULAR MOMENTUM IN TERMS OF THE NET 

AND DIFFUSION VELOCITIES 

In this appendix, terms of an isotropic photon gas with linear momentum 
and intrinsic angular momentum are defined in terms of the net and diffusion 
velocities. 

Photon number density: 

40 u n = TiET3y4jl + i 1 “4;2 

l- 6 

Total energy density: 

40 4 4 
eT =~TY 

4y2 1 + 364 f j 

( l- lS4 ) 3 

Momentum density: 

i = i = ‘3” “3 T4y6 

c2 c (1 - 6 4, 

Intrinsic angular momentum density: 

(J1) 

(52) 

(53) 

i 40 h u =!?$fi+m+=--- T3y4 
27 c2 k 

(1’- 64) 

2 [ 2s2C + t 1+ 64 )I 6 (54) 
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Total pressure: 

+ 36 + + 6 2 + 6 + (55) c ( T4y;J 3 [(l ‘) (% 6;) (3 4, (% Gir)] 

l-6 

Local pressure: 

=&kT (J6) 

Intrinsic angular momentum density flux: 

iii 

Intrinsic angular momentum number density: 

80 II UT 34 6 2 
m=27k -- y 

(1 - 6 “)” 

Entropy density: 

) 
2 

= +.& 

Entropy density flux: 

16 u 
$= 3c 

T3y4 
2 1+6qG + 2s2ti 

) 
1 ( l- cs4 

(58) 

(J9) 

(JlO) 
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APPENDIX K 

PHYSICAL SPACE VARIABLES FOR RANDOM POLARIZATION 

Physical space variables for random polarization are defined in this appendix. 

Photon number density: 

40 u 3 4 
n=nETY (Kl) 

Total energy density: 

eT 
= g T4y4 4y2 - 

Momentum density: 

A 

Intrinsic angular momentum density: 

i=o 

Total pressure: 

“p = p: + i+ 

Local pressure: 

,+ 4u 44 
3cT Y = $ nkT 

Intrinsic angular momentum density flux: 

iii=0 

W2) 

W3) 

W4) 

(K5) 

(KG) 

(K7) 
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Intrinsic angular momentum number density: 

m=O 

Entropy density: 

s=16’ 34= lank ycT Y 3 

Entropy density flux: 

G = SC 

wo 

W9) 

(H30) 

Energy-stress density four tensor: 
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APPENDIX L 

PHYSICAL SPACE VARIABLES FOR RANDOM POLARIZATION, V/c << 1 

Physical space variables for random polarization where V/c -CC 1 are defined 
in this appendix. 

Photon number density: 

Total energy density: 

eTz i:T” V2 + lo- + . . 
c2 

Momentum density: 

Intrinsic angular momentum density: 

i=o 

Total pressure: 

(Ill) 

CL21 

CL31 

(K4) 

(L4) 
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Local pressure: 

Intrinsic angular momentum density flux: 

Ah 
m=O 

Intrinsic angular momentum number density: 

m=O 

Entropy density: 

s&!u 3 3 CT 

Entropy density flux: 
. 

(L5) 

W7) 

W8) 

CL61 

A 
u = SC 
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